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Electromagnetic Resonances and Q-Factors of Lossy

Dielectric Spheres

PETER AFFOLTER ano BALDUR ELIASSON

Abstract—A theoretical and experimental study of the electro-
magnetic resonances of spheres is presented. In particular, the
scattering characteristics of spheres inside rectangular waveguides
are investigated at and around the resonant frequencies.

The approach is based on the scattering theory developed by
Mie in 1908. Mie’s theory is valid for scattering of a plane electro-
magnetic wave by a homogeneous and isotropic sphere of arbitrary
diameter. It encompasses both lossless and lossy spheres. Three
continuous functions of frequency are presented. They contain in-
formation on the resonant frequencies, the Q-factors, and the output
power losses of the sphere. The effect of losses on the resonant be-
havior was also studied.

The theoretical results were compared to experimental data.
The agreement between theory and experiment is excellent. An
experimental study of the effect of inhomogenities and irregularities
of the sphere’s material and shape was also made.

INTRODUCTION

URING OUR investigations of dielectric resonators of
]D different configurations we have studied in particular

the problem of the resonant dielectric sphere. The
electromagnetic resonance of a solid sphere has been studied
by many investigators [1]-[7]. There is an increasing interest
in miniaturizing microwave filters. Some of these filters use
resonant spheres. Many high quality single crystals and cer-
amics of high dielectric constant are now available or are
being developed. Considerable effort has been spent on using
these for dielectric resonator studies and experiments [8]-
[14].

In 1909 Debye deducted the eigenvalue equations for
the natural resonant frequencies of free dielectric and metallic
spheres [2]. The equations can also be deduced from the
theoretical studies of Mie on the scattering of plane waves by
spheres [1]. In 1924 Schaefer and Wilmsen did some experi-
ments with short radio waves and compared them to the re-
sults of Debye and Mie [3].

In 1938 Richtmyer suggested that a sphere might be used
as a dielectric resonator at microwave frequencies [4]. In his
paper he calculates the Q-factors of high-order modes for rela-
tively small dielectric constant.

In 1967 Gastine et al. evaluated Debye’s eigenvalue equa-
tion numerically [5], [20]. The calculations are valid for a
relative dielectric constant in the range 1-100. The losses of
the material were not considered. Some of the theoretical re-
sults are compared to experimental data. The experimental
setup included a sphere symmetrically located inside a rect-
angular waveguide.

The investigations presented in this paper differ from all
the previously mentioned studies in the following aspects.
The discussion of the resonant frequencies of the spheres will
not be based upon Debye’s eigenvalue equation but rather on
Mie’s scattering theory [15, p. 154]. In this paper we consider
spheres made of an arbitrary lossy material. We will also study
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the effect of the spheres on the fields at frequencies other than
the resonant frequencies. Finally we will present a short dis-
cussion of the effect a waveguiding structure will have on the
resonant frequencies of the sphere. An approximate equation
for the power loss ratio of a microwave filter will be given and
compared to experimental data.

GENERAL REMARKS

In all the previously mentioned papers, the discussion is
centered around the resonant frequencies of lossless dielectric
spheres as derived from Debye's eigenvalue equations. For a
certain natural mode number #, these have been derived from
the condition that the amplitudes a. and b, of the modes are
equal to infinity. a,, and b, are the amplitudes of the trans-
verse magnetic (TM) and transverse electric (TE) modes,
respectively. The condition of resonance leads to the familiar
implicit equations for the resonant frequencies, viz. (see, e.g.,
[5, p. 695])
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where o =2x7/\;=kor, 7 is the radius of the sphere, A; is the
wavelength in the medium surrounding the sphere, k; the
wavenumber, and m the sphere’s relative index of refraction.
Jy, N,, and H,®=7J,~iN, are the Bessel, Neumann, and
Hankel functions, respectively. The solutions of (1) and (2)
imply that a scattered field exists without any incident field.
The real physical interpretation of these resonances is not
immediately evident as the solutions of (1) and (2) lead to
complex frequencies. The solution becomes especially difficult
to obtain and interpret when the sphere has a complex index
of refraction.

We will study the general resonant properties of a sphere
which scatters an incident plane wave of infinite extent. As a
particular application, we will consider the case of a sphere
symmetrically located in a hollow waveguide.! The combina-
tion of waveguide and sphere acts as a narrow band-stop
filter. At the resonant frequencies, practically no power is
transmitted. We will establish some approximate expressions
for the performance of such filters.

Our approach to the problem is based on the well-known
theory of Mie [16, p. 39]. The Mie theory describes the scat-
tering of a plane electromagnetic wave by a sphere made of

1 The modes of propagation in and on many microwave waveguide
structures are combinations of plane waves propagating in various direc-
tions (see e.g., [17, p. 106]). The waves inside the waveguide are of finite
extent. To correctly solve the scattering problem inside the waveguide,
one would have to expand the field in the form of the general solution of
the scalar wave equation in spherical coordinates. One would also have to
fulfill the boundary conditions along the surface of the sphere. This ap-
proach falls outside the scope of this paper.
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an arbitrary, isotropic, and homogeneous material. For arbi-
trary free spheres, the resonant frequencies are obtained as
those values of the frequency w for which the real part of the
amplitudes a, and b, are at a maximum. For lossless spheres
of a very large dielectric constant we get resonant frequencies
which are almost the same as those defined in (1) and (2). In
the lossless case the resonances in the Mie theory occur for
all values of a, =b,=(1.0+ ¢0.0). This condition leads to the
following equations for the resonant frequencies:
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Equations (3) and (4) are very similar to (1) and (2). In this
paper we are mainly interested in the solution of the above
equation for m>>1. The corresponding solution for @ = qye, will
then be small, ie., ares<1. For such small arguments the
Neumann functions are orders of magnitude larger than the
corresponding Bessel functions on the right-hand side of (1)
and (2). The solutions of these equations will, therefore, not
be very different from the corresponding solutions to (3) and
(4). For smaller m the situation is different. The solutions of
(1) and (2) may differ considerably from those of (3) and (4).
The Mie resonant frequencies obtained from (3) and (4) seem
to conform more closely to the real physical nature of the
problem as the incident wave has been taken into account.

As a first-order approximation we will consider the plane
waves inside the waveguide to be of infinite extent. Thus, at
frequencies close to the resonant frequency, the expression for
the power scattered by the sphere will be only approximately
valid. The resonant frequencies of the sphere inside the wave-
guide will differ only slightly from the ones observed in free
space. The width of the resonant peak allows one to estimate
the loaded Q-factor of the system.

By dividing the scattered power by the power incident on
the sphere, one gets a dimensionless function of frequency,
R(w). This function contains all the information regarding the
resonant frequencies.

Another continuous function, Q{w), will be defined. It is
equal to w times the energy stored within the sphere divided
by the power scattered and absorbed by the sphere. At all
resonant frequencies its value is equal to the unloaded Q-
factor of the free sphere.

For the filter itself, we will deduce an approximate expres-
sion for the power loss ratio, i.e., the ratio of the powers avail-
able at the filter output and input, respectively. This quantity
P(w) which is'a function of R(w) can also be measured and
thus compared to the theoretical values.

All the calculations needed are easily performed on a com-
puter once a program supplying the Mie parameters of the
scattering process is available.

The approach presented in this paper has various ad-
vantages over previously made calculations. The difficulties
associated with the interpretation of the problem in terms of
single natural modes do not arise here. The Mie theory allows
expressions for the total scattered field to be derived. These
expressions include combinations of all excited modes. The
question of resonance and Q-factors can be answered quite
simply by inspection of the power scattered and absorbed by
the sphere as a function of frequency. The effect of absorption
on the resonant frequencies can be studied easily.
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Fig. 1. Geometry for Mie scattering. Incident wave travels along posi-
tive z axis with electric vector polarized along x axis. A sphere with
radius 7 is centered at the origin. Direction of scattered wave is de-
fined by polar angles § and ¢.

In the following section we will give a more detailed ac-
count of the application of the Mie theory to the problem.

APPLICATION OF THE THEORY OF MIE

The Mie theory describes the scattering of a plane electro-
magnetic wave by an isotropic and homogeneous sphere. The
scattered field vectors can be decomposed into three compo-
nents, Ey, E4, and E, (see Fig. 1),

The incident field is assumed to be polarized along the
% axis. The sphere is located at the origin of the coordinate
system. The Ey-component lies in the POP" plane (the scat-
tering plane) and the E4-component is perpendicular to that
plane. The component E, is pointed along the radius vector g.
There are two types of modes excited by the incident wave,
viz. the TM modes and the TE modes. The TM modes have
no magnetic vector along g, and analogously the TE modes
have no electric vector along ¢ (see e.g., [5, p. 698]). The
radial components decrease as 1/p? whereas the transverse
components decrease as 1/p. For distances larger than two or
three wavelengths, the radial components can be igriored, and
both modes then lie in a plane perpendicular to the radius
vector.

In the far-field zone, the total electric field is given by
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The coefficients a, and b, are the amplitudes of the TM, and
TE, modes, respectively. They are functions of the relative
index of refraction m of the sphere and the size parameter «
according to the following formulas:
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The function {n{(x) is equal to ¥u(x) +4x.(x), where Y, (x) and
Xx(x) are the Ricatti—Bessel functions defined in [16, p. 43].
A corresponding solution with coefficients ¢, and d, can be
found inside the sphere. Here the radial fields do not vanish.
This solution is needed to calculate the energy stored inside
the sphere. Formulas for ¢, and d, are given in [16, p. 45].

The functions m,(cos 6) and 7,(cos 8) depend only on the
scattering angle 8. They are defined in terms of the associated
Legendre polynomials P, (cos 8) (see [16, p. 47]).

The coefficients a,, b, ¢», and d, are osciliating functions
of the index n. For #n somewhat larger than « they decrease
rapidly as a function of #. The sums in (7) and (8) must there-
fore only be summed up to some N. This N specifies the
number of all spherical modes which have been excited by
the incident wave.

Three important parameters which also specify the scat-
tering process are the so-called cross sections of extinction,
scattering, and absorption. The cross section for extinction
multiplied by the incident intensity (i.e., power per unit area)
is equivalent to the power abstracted from the incident beam.
Likewise do the cross sections of scattering and absorption
specify the power lost due to scattering and absorption, re-
spectively. The extinction cross section is equal to the sum of
the scattering and absorption cross sections.

The cross section of extinction is given by
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where a,’ and b,’ are the real parts of g, and b,, respectively.
The energy stored, W, consists of two parts, W, and W,. W is
the energy stored inside the sphere, and W, is the reactive
energy stored outside the sphere. Thus we have

W=W1+W2
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€' is the real part of the dielectric constant of the sphere. The
permeability u; =y, is taken as real. Ep and Hp are the far-
field components of the scattered field given by (5) and (6).
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For all cases which are considered in this paper (i.e., large
dielectric constants), the reactive energy W, is always much
smaller than the energy Wy.2 For the TM modes we have
(Wo/ W1)tu—0 for m—> . For the TE modes the situation is
different. Here the ratio (Ws/ W) converges towards a limit,
viz., (Wz/Wl)TEM——)n/([(ma)n,]z—n) for m—> 0, (ma)s, is the
rth zero of the function J,_ya(ma).
The result of the integration in (10) is
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k, and € are the wavenumber and dielectric constant,-re-
spectively, of the lossless medium surrounding the sphere.
m' and m'’ are the real and imaginary parts of the relative
complex index of refraction of the sphere, i.e., & =&'+1ie"”
=, =eam?=e(m’' +im'’)2. If m'" is equal to zero, (11) and
(12) can be written in the following simpler form:
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We get the function R(w) from (9) by dividing C(w) by 7%,

as follows:

R(w) = 32 S (21 + (e’ + b)),

A p=1

(15)

2 For instance, for ¢;= 100, the evaluation of the above equations for
Wy and W gives at resonance for the TMyp and TEyn modes, respectively,
(Wa/ W)™y =0.017 and (Wo/ W) TR, = 0.128.
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R(w) is identical to the efficiency factor for extinction defined
in [16, p. 50]. It attains a maximum value at each resonant
frequency.

The customary definition of the unloaded Q-factor for a
resonant cavity is Qon = (energy stored times w)/(power dis-
sipated). This value of Qon is only defined for the resonant
frequency w and the mode number n. Our continuous function
Q(w) is defined as follows:

0w = m(i)’ V_CV% g (i),
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This function has the property that at each resonant fre-
quency it attains the value of the corresponding Qon. Q(w) is
like R(w) solely a function of the material and radius of the
sphere and the wavelength of the incident radiation. It is no
measure for the quality of a sphere as a microwave resonator
in the setup considered in this paper.

We define the power loss ratio P(w) as the ratio of the out-
put of the filter to its input when the filter is terminated in a
matched load [17, p. 403]. For a sphere placed within a rec-
tangular waveguide of width ¢ and height b, the function P(w)
is approximately equal to (Hp-mode propagation)

2

P(w) = 1 — m——-cos x- R(w) (17)
a-b

where cos x=(1—(\:/2a)?)V/28 The plane waves inside the
waveguide propagate in directions inclined at an angle x with
respect to the vertical walls of the waveguide [17, p. 106]. As
we have mentioned earlier, the expressionin (17) is an approxi-
mation as it does not take the finite width of the field fully
into account. As we will see later, it is a convenient and rela-
tively accurate measure of the width of the resonance peaks
of this measurable quantity.

In the following section we will give a brief discussion of
the functions R{w) and Q{w).

Discussion

In Fig. 2 a graph of the function R(w) is given for the
arbitrarily chosen parameters e.=100 and ¢.= 100 (1—¢0.01),
respectively (es=e¢o, 1 =us=po). The frequency f =w/2m varies
in the range 7/15 GHz. On the lower horizontal axis, the type
of resonance is indicated (TM.,, or TE,,). # is the mode num-
ber and r is the order of the resonance.

R(w) has a well defined peak ateach resonant frequency wy.es.
The widths of the peaks at the 3-dB points vary within wide
limits. The width generally decreases with increasing mode
number. For lossless dielectrics, the maximum value of R(w)
at each resonant frequency is practically independent of the

? Equation (17) is approximately valid as long as the scattering cross
section of the sphere is smaller than the waveguide cross section. This is
identical to the condition P(w) >0. The range of validity of (17) can also
be established in another way. Most of the reactive energy Wa(r’) which
is stored outside the sphere is concentrated within a concentric sphere of
radius 7’ surrounding the resonator. When this imaginary concentric
sphere is wholly contained within the waveguide, then (17) will be a
fairly good approximation. For instance, if ¢, =100, then 90 percent of
Wa( ») at resonance is contained within a sphere of radius #’=3.75 7.
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Fig. 2. The efficiency factor for extinction for e =100 and e =100

(1—10.01) versus frequency f=w/27. Mode identification is indicated
below the frequency axis. Sphere diameter = 0.4000 cm.
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Fig. 3. Continuous Q(w) function for ¢ =100 and =100 (1—4¢ 0.01)
versus frequency f =w/27. Mode identification is indicated below the
frequency axis, Sphere diameter = 0.4000 ¢m,

dielectric constant. It is approximately given by the value of
R(w) for the resonant mode, i.e.,

4 2 2
A2y

Wreg” ' 7

R(w) = (18)

Ores

where ¢ is the velocity of light in the medium surrounding the
sphere.

The corresponding graph for Q(w) is shown in Fig. 3. It
has been calculated for a radius of 2 X 1073 m.

The values of the coefficients ¢, and d, for lossless di-
electrics [(13) and (14)] at the resonant frequencies are equal
to i(m’)_llzN,H_l/g(oc)/]n+1/2(m'a) and i(m’)“’/an_{_l/g(a)/
Jnrz(m'e), respectively. By inserting the above values into
(13) and (14) and subsequently inserting these expressions
along with (3), (4), and (18) into (16), we get for Q(wres):
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The parameter o is equal to @ =04es ¥ =wres ¥ 7/c and
O = Ol TE = r0s T © 7/, Tespectively. In the lossy case, the func-

tion Q(w) can be calculated from (11) and (12).

EXPERIMENTS

As an illustration of the theory developed and discussed
in the previous chapters, some results of measurements will
be given in this section. The resonant behavior of a sphere
placed inside a rectangular waveguide will be studied. In
order to minimize the splitting up of the modes [5, p. 700],
the measurements were made with a sphere of a single crystal,
SrTiO;. All measurements were made at X-band frequencies.
The sphere’s diameter was 2.000+0.001 mm. Its relative
dielectric constant as determined by the frequency of the
TMy mode was ¢’=324.4 at room temperature. Inside the
waveguide, the sphere was positioned by means of four thin
Teflon tabs. Several measurements revealed that the position
of the sphere has practically no influence on the resonant fre-
quency. Furthermore, no splitting up of the modes into two of
three separate lines was observed when varying the position
of the sphere inside the waveguide. This splitting up does
occur when using spheres made of polycrystalline SrTiO; and
TiO,. The lines can be as far apart as 0.1 GHz. The appear-
ance of frequency splitting when using polycrystalline spheres
leads us to believe that the macroscopic isotropy and/or
homogeneity is slightly altered when the spheres are made by
using the pressing and sintering process. Note that SrTiOs
and EuTiO; are the only titanates which show perfectly
cubic structures at room temperature [18, p. 415].

In order to avoid difficulties due to the very high temper-
ature dependency of the dielectric constant, the least possible
amount of RF power has to be used when measuring [19, p.
241].

At room temperature and X-band frequencies, the loss
tangent tan § =¢'' /¢, of single crystal StTiO;zis 5 - - 10 X104
[19, p. 241]. Our theory shows that loss tangents of this order
considerably decrease the resonance peak of the third excited
mode, i.e., the TEz; mode. The expected depth of resonance is
of the order of the ripple of a directional coupler. In order to
obtain minimum ripple of the power incident on the sample
sphere, the experimental setup shown in Fig. 4 was used for
making all the measurements.

Fig. 5(a) shows a plot of the results obtained by the Mie
computer program for P(w) (17) at frequencies between 7.9
and 12.4 GHz. The parameters chosen were ¢’ =324.4 and
tah §=7X10"4 Three modes occurring within the X band
are clearly shown by the calculations. The two relevant fre-
quency domains of Fig. 5(a) are illustrated in Fig. 5(b), where
tan § was varied between 1X10~™% and 1X10™% For tan
0=1X10"2, the TEy resonance practically disappears, while
the TE;; resonance can still be identified for tan §=1X107
The resonant frequencies of the different modes are practically
independent of tan § for 1 X10™2> tan §>1X10™4

The results of our measurements are shown in Fig. 6(a).
The three resonances predicted by the theory are clearly
visible. In analogy to Fig. 5(b), Fig. 6(b) shows the relevant
frequency domains with the same bandwidth of 0.2 GHz. As
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Fig. 4. Experimental setup (X band, WR-90): 1) sweep generator, 2)
coax to waveguide adapter, 3) 10-dB directional coupler, 4) twist 90°,
5) ferrite isolator, 6) termination, 7) thermistor mount, 8) sample
sphere under test, 9) power meter, 10) leveling amplifier, 11) recorder,
12) frequency meter, 13) crystal detector, and 14) oscillioscope.
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Fig. 5. (a) Theoretical power loss ratio P(w) for e,=324.4 (1 —140.0007)
versus X-band frequencies. Sphere diameter =0.2000 cm. (b) Rele-

vant frequency domains of theoretical power loss ratio P(w) for dif-
ferent imaginary parts of ¢;. Sphere diameter =0.2000 cm.

the incident power varies less than 0.5 dB over the whole X
band, we were able to use the transmitted power Py directly
for P,y without having to form the power loss ratio Pout/ Pin.

Discussion

The measured values agree very well with the calcula-
tions. The deviations of the resonant frequencies are of the
order of 0.1 percent. Note that a difference in the relative
dielectric constant e’ of 0.1 percent produces a deviation of
0.05 percent. A relative change of the sphere’s diameter of 0.1
percent also produces a deviation of 0.1 percent. It can be
concluded that the measurements were done on a practically
perfect and isotropic sphere made of a single crystal remark-
ably free of internal mechanical stress.
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Fig. 6. (a) Recorder plot of transmitted power Pr versus X-band fre-

quencies. A SrTiOs single crystal sphere with a diameter of 0.2000 +
0.0001 cm was mounted in a WR-90 waveguide. (b) Relevant fre-
quency domains of transmitted power Pr. A SrTiOs single crystal
sphere with a diameter of 0.2000 +0.0001 cm was mounted ina WR-90
waveguide.

The asymmetry of the measured TEy resonance curve is
probably caused by the influence of the detector backscatter
and the waveguide walls.

The response of the TMy; and TEy modes is stronger than
predicted by theory. This is probably caused by the field con-
centrations which are produced by the Teflon carriers in the
vicinity of the sphere,

As already suggested by Gastine et al. [5, p. 700] and Yu
[7, p. 724], experiments as described here are ideally suited
for determining high relative dielectric constants ¢’ and asso-
ciated low-loss tangents tan o.

The shape and depth of the resonance curves shown in
Fig. 5(a) and (b) can, as mentioned in the theoretical section,
be used to calculate the loaded Q-factors, Qioaded, of the system.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, SEPTEMBER 1973

Furthermore, by analyzing the splitting up of one or more
modes, one can obtain a measure for the dielectrical isotropy
of the sample under examination.

ACKNOWLEDGMENT

The authors wish to thank Prof. G. Epprecht, A. Kaech,
and F. Schaer for helpful discussions, and Prof. H. Graenicher
for supplying the SrTiOs single crystal for the experiments.

REFERENCES

[1] G. Mie, “Beitrage zur Optik triiber Medien,” Ann. Phys. (Leipzig),
vol. 25, pp. 377-445, 1908.

[2] P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,”
Ann, Phys. (Leipzig), vol. 30, pp. 57-136, 1909.

[3] C. Schaefer and K. Wilmsen, “Ueber die elektrischen und magne-
tischen Eigenschwingungen dielektrischer und metallischer Kugeln,”
Z. Phys,, pp. 345-354, 1924,

[4] R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys., vol. 10,
pp. 391-398, June 1939.

[5] M. Gastine, L. Courtois, and J. L. Dormann, “Electromagnetic
resonances of free dielectric spheres,” IEEE Trans. Microwave
Theory Tech. (1967 Symposium Issue), vol. MTT-15, pp. 694-700,
Dec. 1967,

[6] I. Wolff, “Die elektromagnetischen Eigenschwingungen einer
offenen Ferritkugel,” Arch. Elek. Ubertragung, vol. 23, no. 11, pp.
561-569, 1969,

{7] J. S. Yu, “A resonance method for measurement of large dielectric
constant with small loss,” IEEE Trans. Micvowave Theory Tech.
(Corresp.), vol. MTT-17, pp. 724-726, Sept. 1969.

[8] A. Okaya, “The rutile microwave resonator,” Proc. IRE (Corresp.),
vol. 48, p. 1921, Nov. 1960.

[9] A. Okaya and L. F. Barash, “The dielectric microwave resonator,”
Proc, IRE, vol. 50, pp. 2081-2092, Oct. 1962.

[10] S. B. Cohn, “Microwave bandpass filters containing high-Q dielec-
tricresonators,” IEEE Trans. Microwave Theory Tech.,vol. MTT-16,
pp. 218-227, Apr, 1968.

[11] T. D. Iveland, “Dielectric resonator filters for application in micro-
wave integrated circuits,” IEEE Trans. Microwave Theory Tech.
(Special Issue on Microwave Integrated Circuits), vol, MTT-19, pp.
643-652, July 1971.

[12] H. M. Miiller, “Dielektrische Resonatoren und ihre Anwendungen
als Mikrowellenfilter,” Z. Angew. Phys., vol. 24, no. 3, pp. 142-147,
1968.

[13] S. Fiedziuszko and A. Jelefiski, “The influence of conducting walls
on resonant frequencies of the dielectric microwave resonator,”
IEEE Trans. Microwave Theory Tech, (Corresp.}, vol. MTT-19, pp.
778-779, Sept. 1971.

——, “Double dielectric resonator,” ibid., pp. 779-781.

[14] 1. Wolff, “Offene Mikrowellenresonatoren,” Nachritentech. Z., vol.
24, no. 6, pp. 299-306, 1971,

[15] H. C. van de Hulst, Light Scattering by Small Particles.
Wiley, 1957.

[16] M. Kerker, The Scaitering of Light. New York: Academic, 1969.

[17] R. E, Collin, Foundations for Microwave Engineering. New York:
McGraw-Hill, 1966. ’

[18] H. J. Martin, Die Ferroelektrika. Leipzig: Akademische Verlagsge-
sellschaft Geest & Portig K. G., 1964,

[19] R. O. Bell and G. Rupprecht, “Measurements of small dielectric
losses in material with a large dielectric constant at microwave fre-
quencies,” IRE Trans. Microwave Theory Tech., vol. MTT-9, pp.
239-242, May 1961,

[20] M. Gastine, “Resonances electromagnetiques d’echantillons dielec-
triques spheriques,” thesis, Faculté des Sciences d'Orsay, France,
Nov. 1967.

New York:




