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Electromagnetic Resonances and Q-Factors of LossY

Dielectric Spheres

PETER AFFOLTER AND BALDUR ELIASSON

Abstract—A theoretical and experimental study of the electro-
magnetic resonances of’ spheres is presented. In particular, the
scattering characteristics of spheres inside rectangular waveguides
are investigated at andaround the resonant frequencies.

The approach is based on the scattering theory developed by
Miein 1908. Mie’stheory isvalid for scattering of aplsneelectro-
magnetic wave by a homogeneous and isotropic sphere of arbitrary
dktrneter. It encompasses both lossless and 10SSY spheres. Three
continuous functions of frequency are presented. They contain in-
formation on the resonant frequencies, the Q-factors, and the output
power losses of the sphere. The effect of losses on the resonant be-
havior was also studied.

The theoretical results were compared to experimental data.
The agreement between theory and experiment is excellent. An
experimental study of the effect of inhomogenities and irregularities
of the sphere’s material and shape was also made.

INTRODUCTION

IDURING OUR investigations of dielectric resonators of

different configurations we have studied in particular

the problem of the resonant dielectric sphere. The

electromagnetic resonance of a solid sphere has been studied

by many investigators [1]- [7 ]. There is an increasing interest

in miniaturizing microwave filters. Some of these filters use

resonant spheres. Many high quality single crystals and cer-

amics of high dielectric constant are now available or are

being developed. Considerable effort has been spent on using

these for dielectric resonator studies and experiments [8 ]–

[14].

In 1909 Debye deducted the eigenvalue equations for

the natural resonant frequencies of free dielectric and metallic.
spheres [2]. The equations can also be deduced from the

theoretical studies of Mie on the scattering of plane waves by

spheres [1]. In 1924 Schaefer and Wilmsen did some experi-

ments with short radio waves and compared them to the re-

sults of Debye and Mie [3].

In 1938 Richtmyer suggested that a sphere might be used

as a dielectric resonator at microwave frequencies [4]. In his

paper he calculates the Q-factors of high-order modes for rela-

tively small dielectric constant.

In 1967 Gastine et al. evaluated Debye’s eigenvalue equa-

tion numerically [5], [20 ]. The calculations are valid for a

relative dielectric constant in the range 1-100. The losses of

the material were not considered. Some of the theoretical re-

sults are compared to experimental data. The experimental

setup included a sphere symmetrically located inside a rect-

angular waveguide.

The investigations presented in this paper differ from all

the previously mentioned studies in the following aspects.

The discussion of the resonant frequencies of the spheres will

not be based upon Debye’s eigenvalue equation but rather on

Mie’s scattering theory [15, p. 154]. In this paper we consider

spheres made of an arbitrary lossy material. We will also study
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the effect of the spheres on the fields at frequencies other than

the resonant frequencies. Finally we will present a short dis-

cussion of the effect a waveguiding structure will have on the

resonant frequencies of the sphere. An approximate equation

for the power loss ratio of a microwave filter will be given and

compared to experimental data.

GENERAL REMARKS

In all the previously mentioned papers, the discussion is

centered around the resonant frequencies of lossless dielectric

spheres as derived from Debye’s eigenvalue equations. For a

certain natural mode number W, these have been derived from

the condition that the amplitudes ~ and bn of the modes are

equal to infinity. % and bn are the amplitudes of the trans-

verse magnetic (TM) and transverse electric (TE) modes,

respectively. The condition of resonance leads to the familiar

implicit equations for the resonant frequencies, viz. (see, e.g.,

[5, p. 695])

Jn_l/2(mx) IIn-,,,(z)(a)
TM: ——=???’. n @2; 1) (1)——.

.7.+1 /2(fd ILt+l/2(2)(a) ~

Jn_l/,(mY) 1 Hn_l/2(2)(a)
TE : —— =..

.Tn+l/,(??zcr)

(2)
m IZ.+1/.Z(2)(a)

where a = 27rr/ht = kzr, r is the radius of the sphere, 12 is the

wavelength in the medium surrounding the sphere, k, the

wavenumber, and m the sphere’s relative index of refraction.

J,, N,, and H,(2) = J, –iN, are the Bessel, Neumann, and

Hankel functions, respectively. The solutions of (1) and (2)

imply that a scattered field exists without any incident field.

The real physical interpretation of these resonances is not

immediately evident as the solutions of (1) and (2) lead to

complex frequencies. The solution becomes especially difficult

to obtain and interpret when the sphere has a complex index

of refraction.

We will study the general resonant properties of a sphere

which scatters an incident plane wave of infinite extent. As a

particular application, we will consider the case of a sphere

symmetrically located in a hollow waveguide.l The combina-

tion of waveguide and sphere acts as a narrow band-stop

filter. At the resonant frequencies, practically no power is

transmitted. We will establish some approximate expressions

for the performance of such filters.

Our approach to the problem is based on the well-known

theory of Mie [16, p. 39]. The Mie theory describes the scat-
tering of a plane electromagnetic wave by a sphere made of

I The modes of propagation in and on many microwave waveguide
structures are combinations of plane waves propagating in various direc-
tions (see e.g., [17, p. 106]). The waves inside the waveguide are of finite
extent. To correctly solve the scattering problem inside the waveguide,
one would have to expand the field in the form of the general solution of
the scalar wave equation in spherical coordinates. One would also have to
fulfill the boundary conditions along the surface of the sphere. This ap-
proach falls outside the scope of this paper.
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an arbitrary, isotropic, and homogeneous material. For arbi-

trary free spheres, the resonant frequencies are obtained as

those values of the frequency w for which the real part of the

amplitudes an and b~ are at a maximum. For lossless spheres

of a very large dielectric constant we get resonant frequencies

which are almost the same as those defined in (1) and (2). In

the Iossless case the resonances in the Mie theory occur for

all values of an= b~ = (1.0+ i 0.0). This condition leads to the

following equations for the resonant frequencies:

Jn_,,2(tmx) N.-,,,(a)
TM: =?n”

Jn+l/2(?tZa)
n (m2: 1) (3)

N.+l,2(a) – ;“

TE .Tn_l/,(ttZa) 1 N.-l,,(a)
=—.

J.+1/2(ma)
(4)

m Nn+l/2(a)

Equations (3) and (4) are very similar to (1) and (2). In this

paper we are mainly interested in the solution of the above

equation for m >>1. The corresponding solution for a =ar.~ will

then be small, i.e., a,as <1. For such small arguments the

Neumann functions are orders of magnitude larger than the

corresponding Bessel functions on the right-hand side of (1)

and (2). The solutions of these equations will, therefore, not

be very different from the corresponding solutions to (3) and

(4). For smaller m the situation is different. The solutions of

(1) and (2) may differ considerably from those of (3) and (4).

The Mie resonant frequencies obtained from (3) and (4) seem

to conform more closely to the real physical nature of the

problem as the incident wave has been taken into account.

As a first-order approximation we will consider the plane

waves inside the waveguide to be of infinite extent, Thus, at

frequencies close to the resonant frequency, the expression for

the power scattered by the sphere will be only approximately

valid. The resonant frequencies of the sphere inside the wave-

guide will differ only slightly from the ones observed in free

space. The width of the resonant peak allows one to estimate

the loaded Q-factor of the system.

By dividing the scattered power by the power incident on

the sphere, one gets a dimensionless function of frequency,

R(u). This function contains all the information regarding the

resonant frequencies.

Another continuous function, Q(u), will be defined. It is

equal to u times the energy stored within the sphere divided

by the power scattered and absorbed by the sphere. At all

resonant frequencies its value is equal to the unloaded Q-

factor of the free sphere.

For the filter itself, we will deduce an approximate expres-

sion for the power loss ratio, i.e., the ratio of the powers avail-

able at the filter output and input, respectively. This quantity

.P(oJ) which is”a function of R(r.o) can also be measured and

thus compared to the theoretical values.

All the calculations needed are easily performed on a com-

puter once a program supplying the Mie parameters of the

scattering process is available.

The approach presented in this paper has various ad-

vantages over previously made calculations. The difficulties

associated with the interpretation of the problem in terms of

single natural modes do not arise here. The Mie theory allows

expressions for the total scattered field to be derived. These

expressions include combinations of all excited modes. The

question of resonance and Q-factors can be answered quite

simply by inspection of the power scattered and absorbed by

the sphere as a function of frequency, The effect of absorption

on the resonant frequencies can be studied easily.
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Fig. 1. Geometry for Mie scattering. Incident wave travels along posi-
tive z axis with electric vector polarized along x axis. A sphere with
radius r is centered at the origin. Direction of scattered wave is de-
fined by polar angles 0 and +.

In the following section we will give a more detailed ac-

count of the application of the Mie theory to the problem.

APPLICATION OF THE THEORY OF MIE

The Mie theory describes the scattering of a plane electro-

magnetic wave by an isotropic and homogeneous sphere. The

scattered field vectors can be decomposed into three compo-

nents, EO, E4, and EP (see Fig. 1).

The incident field is assumed to be polarized along the

w axis. The sphere is located at the origin of the coordinate

system. The E@-component lies in the POP” plane (the scat-

tering plane) and the l?~-component is perpendicular to that

plane. The component EP is pointed along the radius vector p.

There are two types of modes excited by the incident wave,

viz. the TM modes and the TE modes. The TM modes have

no magnetic vector along p, and analogously the “rE modes

have no electric vector along p (see e.g., [5, p. 698]). The

radial components decrease as l/p2 whereas the itransverse

components decrease as l/p. For distances larger than two or

three wavelengths, the radial components can be ignored, and

both modes then lie in a plane perpendicular to the radius

vector.

In the far-field zone, the total electric field is given by

exp (—&p)
E+=–i —. S@. sinrp

k,p
(5)

E,g=i
exp (— ikzp)

—. SO, COS4
kjp

(6)

where

The coefficients a. and bn are the amplitudes of the TM. and

TEn modes, respectively. They are functions of th~e relative

index of refraction m of the sphere and the size parameter a

according to the following formulas:

*n(a). *n’(ma) – m. *.(ma)$.’(a)

a“ = ~.(a). #.’(ma) – m .~.(ma)~’(a)

~ = m+w(a)h’ (ma) — *. (ma)+.’(a)
n

m~(a)~.’(ma) – $W(ma)f’(fx) “



AFFOLTER AND ELIASSON: RESONANCES AND Q-FAcT0R3 OF Dielectric spHERES 575

The function ~fi(x)is equal to~n(x) +i~n(x), where #n(x) and

x.($) are the Ricatti–Bessel functions definedin [16, p. 43].

A corresponding solution with coefficients CS and dm can be

found inside the sphere. Here theradial fields do not vanish.

This solution is needed to calculate theenergy stored inside

the sphere. Formulas forc~and dnare given in [16, p. 45].

The functions ~n(cosfl) and~n(cosd) depend only on the

scattering angle O. They aredefined in terms of the associated

Legendre polynomials .Pnf’J(cos O) (see [16, p. 47]).

Thecoefficientsa~, bn, cfi, andd~areo scillatingf unctions

of the index n. For n somewhat larger than a they decrease

rapidly asa function of n. The sumsin (7) and (8) must there-

fore onlv be summed UD to some N. This N specifies the

number-of all s~herical “modes which have been-excited by

the incident wave.

Three important parameters which also specify the scat-

tering m-ocess are the so-called cross sections of extinction,
u.

scattering, and absorption. The cross section for extinction

multiplied bythe incident intensity (i.e., power per unit area)

isequivalent tothepower abstracted from the incident beam.

Likewise do the cross sections of scattering and absorption

specify the power lost due to scattering and absorption, re-

spectively. Theextinction cross section is equal to the sum of

the scattering and absorption cross sections.

The cross section of extinction is given by

C(co)=~(CfiTM +C.TE)= ~~1(2tz +l)(a.’+ b.’) (9)
n= 1 n

For all cases which are considered in this paper (i.e., large

dielectric constants), the reactive energy W,is always much

smaller than the energy WI.2 For the TM modes we have

(WJWJTM-4 for m+ m. For the TE modes the situation is

different. Here the ratio (W,/ WI) converges towards a limit

viz., ( WZ/ WI) TEnr-WZ/( [(ma)~~] 2— n) for m+ KI. (ma)~~ is the

rth zero of the function JA12,(mCt).

The result of the integration in (10) is

co

w,(u) = ~ (W1.TM + W1.TE)

where

{
—73, (m’z — wz”2). ] Jn+l/2(7m) 12

()
3

. Im {Yti_llz(ma) } – ~

r

where an’ and bn’ are the real parts of a. and b., respective] y.

The energy stored, W, consists of two parts, WI and W2. WI is — Re {J.+i/Jma)}Im{J.-ln(ma)\11} (11)

the energy stored inside the sphere, and W2 is the reactive

energy stored outside the sphere. Thus we have

W= W,+W2

where

,E _ wl.TM(dn)
Wln – ——-

W12 _ %Im

27r o(m’ + ire”)
kl= . = k,(m’ + ire”).

(12)

W=~fo2”f”f’(el\ E,2+p]H\2)p2sin0d@d8dp

AZ

’10) k, and e, are the wavenumber and dielectric constant, - re-
00

sDectivelv. of the Iossless medium surrounding the sphere..
and m’ and m“ are the real and imaginary parts of the relative

complex index of refraction of the sphere, i.e., q = <I’ +zkl”

w, = jj (W2.TM + W2.TE) =e’cr=qmz =ez(m’+irn’’)z. If m“ is equal to zero, (11) and

n= 1 (12) can be written in the following simpler form:

TM _ T’”lcn\2”(2n+l)
WI% – — –.c2. m’2

4k18

+P2[I Iii’ – [ HF\2])p2sine@~e@ . [((m’a)’ – tz) .lm+~,z’(m’a)

[
“ (n – CX2)(J.,.I,Z2(L4 + N.+1/22(4)

+ (m’cx)’ .J.-~,.22(m’a)

— 2w. a m’ .Jn+1,2(m’a)Jn-l/2 (m’a)] (13)

wl.TM(&J
W1.

TE =

m“ - “
(14)

– CY2(Jn-1/Z2(a) + Nn–l{z2(a)) We get the function R(ti) from (9) by dividing C(co) by m’,

+ 2na(Jn+l/2(a)J.-l/2 (a)
as follows:

1+ N.+,,, (a).A7n-,,z(a)) + ~ a .
n-

R(co) = ~ jj (272 + I)(an’ + b.’). (15)
d n=l

el’ is the real part of the dielectric constant of the sphere. The

permeability ~1 =p~ is taken as real. EF and HF are the far-
ZFor instance, for 6,= 100, the evaluation of the above equations for

field components of the scattered field given by (5) and (6).
WI and Wz gives at resonance for the TMu and TE1l modes, respectively,
(WZ/WJTM,l= 0.017 and (W2/W1) TE1, = 0.128.
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R(w) is identical to the efficiency factor for extinction defined

in [16, p. 50]. It attains a maximum value at each resonant

frequency.

The customary definition of the unloaded @factor for a

resonant cavity is Qon= (energy stored times u)/(power dis-

sipated). This value of Qon is only defined for the resonant

frequency coand the mode number n. Our continuous function

Q(u) is defined as follows:

5 (w,.’”+ w2?tTM + w,.” + w2n”)

?2=1
~ (16)

5 (c.’”+ c.’”)
n= 1

This function has the property that at each resonant fre-

quency it attains the value of the corresponding Q.n. Q(co) is

like R(u) solely a function of the material and radius of the

sphei-e and the wavelength of the incident radiation. It is no

measure for the quality of a sphere as a microwave resonator

in the setup considered in this paper.

We define the power loss ratio P(u) as the ratio of the out-

put of the filter to its input when the filter is terminated in a

matched load [17, p. 403]. For a sphere placed within a rec-

tangular waveguide of width a and height b, the function P(cJ)

is approximately equal to (lY1o-mode propagation)

P(a) = 1 – ~.:; .cosx. R(@) (17)

where cos x = (1 — (Az/2a) 2,112.8 The plane waves inside the

waveguide propagate in directions inclined at an angle x with

respect to the vertical walls of the waveguide [17, p. 106]. As

we have mentioned earlier, the expression in (17) is an approxi-

mation as it does not take the finite width of the field fully

into account. As we will see later, it is a convenient and rela-

tively accurate measure of the width of the resonance peaks

of this measurable quantity.

In the following section we will give a brief discussion of

the functions l?(u) and Q(w).

DISCUSSION

In Fig. 2 a graph of the function l?(m) is given for the

arbitrarily chosen parameters e,= 100 and e,= 100 (1 – i 0.01),

respectively (cz = q, PI =Pt =po). The frequency =cO/27r varies

in the range 7/15 GHz. On the lower horizontal axis, the type

of resonance is indicated (TM., or TEnr). n is the mode num-

ber and r is the order of the resonance.

R(w) has a well defined peak at each resonant frequency u,,,.

The widths of the peaks at the 3-d13 points vary within wide

limits. The width generally decreases with increasing mode

number. For Iossless dielectrics, the maximum value of R(a)

at each resonant frequency is practically independent of the

8 Equation (17) is approximately valid as long as the scattering cross
section of the sphere is smaller than the waveguide cross section. This is
identical to the condition P(oJ) >0. The range of validity of (17) can also
be established in another way. Most of the reactive energy ?7’2(?’) which
is stored outside the sphere is concentrated within a concentric sphere of
radius r’ surrounding the resonator. When this imaginary concentric
sphere is wholly contained within the waveguide, then (17) will be a
fairly good approximation. For instance, if e,= 100, then 90 percent of
Wz( m) at resonance is contained within a sphere of radius r“ = 3.75 r.
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Fig. 2. The efficiency factor for extinction for e,= 100 and G= 100
(1 – i 0.01) versus frequency= rJ\27r. Mode identification is indicated
below the frequency axis. Sphere diameter = 0.4000 cm.
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continuous Q(w) function for G= 100 and e.= 100 (1 – i 0.01)
versus frequency f= @/27r. Mode identification is indicated below the
frequency axis, Sphere diameter = 0.4000 cm.

dielectric constant. It is approximately given by the value of

R(oJ) for the resonant mode, i.e.,

R(u) ~ =2= (4?2 + 2).+ (18)
L%efiz

where c is the velocity of light in the medium surrounding the

sphere.

The corresponding graph for Q(w) is shown in Fig. 3. It

has been calculated for a radius of 2 X 10-’ m.

The values of the coefficients cm and d. for Iossless di-

electrics [(13) and (14) ] at the resonant frequencies are equal

to i(m’)–I/2N*1/2(a) /Jn+l/2(m’a) and i(m’)3’2iV~UZ(a)/

~n+lf~(m’a), respectively. B y inserting the above values into

(13) and (14) and subsequently inserting these expressions

along with (3), (4), and (18) into (16), we get for Q(a,~,):

‘re3TM‘:[(n2(m2-2-;+n)Nn+l’22@
+ a’(m’ – l) N.-I/22(a)

– 2na(m’ – l) Nfl+l,z(ci)Nn-1,2 (a)

+ ~ a + (?Z– a2).Jn+l/22(Cd
7r

—

1a2Jn_l,,ya)+ ‘2mxJr’+,/2(4Jn-l/2 (c4 (19)
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[
QresTE=; a’(m’–l)~.+~,,’(a)

+(1’z-a’)Jn+,/2’(rY) –a’J.-l/2’(a)

1+2dn+l/2(a)J.-l/2 (a) +5x . (20)
n-

The parameter a is equal to a=a~8TM=co~,TM r/c and

a! = areaTE = ~re~TE r/c, respectively. In the Iossy case, the func-

tion Q(u) can be calculated from (11) and (12).

EXPERIMENTS

As an illustration of the theory developed and discussed

in the previous chapters, some results of measurements will

be given in this section. The resonant behavior of a sphere

placed inside a rectangular waveguide will be studied. In

order to minimize the splitting up of the modes [5, p. 700],

the measurements were made with a sphere of a single crystal,

SrTiOa. All measurements were madeat X-band frequencies.

The sphere’s diameter was 2.000 fO.001 mm. Its relative

dielectric constant as determined by the frequency of the

TMu mode was e,’=324.4 at room temperature. Inside the

waveguide, the sphere was positioned by means of four thin

Teflon tabs. Several measurements revealed thatthe position

of the sphere has practically no influence on the resonant fre-

quency. Furthermore, no splitting up of the modes into two of

three separate lines was observed when varying the position

of the sphere inside the waveguide. This splitting up does

occur when using spheres made of polycrystalline SrTiOt and

TiO1. The lines can be as far apart as 0.1 GHz. The appear-

ance of frequency splitting when using polycrystalline spheres

leads us to believe that the macroscopic isotropy and/or

homogeneity is slightly altered when the spheres are made by

using the pressing and sintering process. Note that SrTiOs

and EuTiOa are the only titanates which show perfectly

cubic structures at room temperature [18, p. 415].

In order to avoid difficulties due to the very high temper-

ature dependency of the dielectric constant, the least possible

amount of RF power has to be used when measuring [19, p.

241].

At room temperature and X-band frequencies, the loss

tangent tan r?= er’’/e,’ of single crystal SrTiOs is 5 . ..10 X 10_4

[19, p. 241]. Our theory shows that loss tangents of this order

considerably decrease the resonance peak of the third excited

mode, i.e., the TEZ1 mode. The expected depth of resonance is

of the order of the ripple of a directional coupler. In order to

obtain minimum ripple of the power incident on the sample

sphere, the experimental setup shown in Fig. 4 was used for

making all the measurements.

Fig. 5(a) shows a plot of the results obtained by the Mie

computer program for P(u) (17) at frequencies between 7,9

and 12.4 GHz. The parameters chosen were e,’= 324.4 and

tah ~ = 7 X I&d. Three modes occurring within the X band

are clearly shown by the calculations. The two relevant fre-

quency domains of Fig. 5(a) are illustrated in Fig. 5(b), where

tan C3was varied between 1 X 10–2 and 1 X 10–4. For tan

13= 1 X 10–8, the TE21 resonance practically disappears, while

the TE1l resonance can still be identified for tan 6 = 1 X 10_l.

The resonant frequencies of the different modes are practically

independent of tan 6 for 1 X 10–2> tan 8>1 X 10–4.

The results of our measurements are shown in Fig. 6(a).

The three resonances predicted by the theory are clearly

visible. In analogy to Fig. 5(b), Fig. 6(b) shows the relevant

frequency domains with the same bandwidth of 0.2 GHz, As

I

Fig. 4. Experimental setup (X band, WR-90) : 1) sweep generator, 2)
coax to waveguide adapter, 3) 10-d B directional coupler, 4) twist 90”,
5) ferrite isolator, 6) termination, 7) thermistor mount, 8) sample
sphere under test, 9) power meter, 10) leveling amplifier, 11) recorder,
12) frequent y meter, 13) crystal detector, and 14) oscilloscope.
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Fig. 5. (a) Theoretical power loss ratio P(a) for c, = 324.4 (1 – ;0.0007)
versus X-band frequencies. Sphere diameter = 0.2000 cm. (b) Rele-
vant frequency domains of theoretical power loss ratio P(o) for dif-
ferent imaginary parts of+. Sphere diameter = 0.2000 cm.

the incident power varies less than 0.5 dB over the whole X

band, we were able to use the transmitted power ~2’ directly

for I’out without having to form the power loss ratio Pout/Pin.

DISCUSSION

The measured values agree very well with the calcula-

tions. The deviations of the resonant frequencies are of the

order of 0.1 percent. Note that a difference in the relative

dielectric constant q.’ of 0.1 percent produces a deviation of

0.05 percent. A relative change of the sphere’s diameter of 0.1

percent also produces a deviation of 0.1 percent. It can be

concluded that the measurements were done on a practically

perfect and isotropic sphere made of a single crystal remark-

ably free of internal mechanical stress.
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Fig. 6. (a) Recorder plot of transmitted power ~~versusx-bandfre-
quencies. ASrTiOt single crystal sphere witha diameter of 0.2000+
0.0001 cm was mounted in a WR-90 waveguide. (b) Relevant fre-
quency domains of transmitted power PT. A SrTiOs single crystal
sphere with a diameter of 0.2000 +0.0001 cm was mounted in a WR-90
waveguide.

The asymmetry of the measured TEI1 resonance curve is

probably caused by the influence of the detector backscatter

and the waveguide walls.

The response of the TMu and TEZ1 modes is stronger than

predicted by theory. This is probably caused bythe field con-

centrations which are produced by the Teflon carriers in the

vicinity of the sphere.

As already suggested by Gastine et al. [5, p. 700] and Yu

[7, p. 724], experiments as described here are ideally suited

for determining high relative dielectric constants ~,’ and asso-

ciated low-loss tangents tan rS.

The shape and depth of the resonance curves shown in

Fig. 5(a) and (b) can, as mentioned in the theoretical section,

be used to calculate the loaded Q-factors, QIO,ded, of the system.

Furthermore, by analyzing the splitting up of one or more

modes, one can obtain a measure for the dielectrical isotropy

of the sample under examination.
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